Sepsis-Induced Cardiomyopathy: Oxidative Implications in the Initiation and Resolution of the Damage

نویسندگان

  • Vasiliki Tsolaki
  • Demosthenes Makris
  • Konstantinos Mantzarlis
  • Epameinontas Zakynthinos
چکیده

Cardiac dysfunction may complicate the course of severe sepsis and septic shock with significant implications for patient's survival. The basic pathophysiologic mechanisms leading to septic cardiomyopathy have not been fully clarified until now. Disease-specific treatment is lacking, and care is still based on supportive modalities. Septic state causes destruction of redox balance in many cell types, cardiomyocytes included. The production of reactive oxygen and nitrogen species is increased, and natural antioxidant systems fail to counterbalance the overwhelming generation of free radicals. Reactive species interfere with many basic cell functions, mainly through destruction of protein, lipid, and nucleic acid integrity, compromising enzyme function, mitochondrial structure and performance, and intracellular signaling, all leading to cardiac contractile failure. Takotsubo cardiomyopathy may result from oxidative imbalance. This review will address the multiple aspects of cardiomyocyte bioenergetic failure in sepsis and discuss potential therapeutic interventions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metformin-attenuated sepsis-induced oxidative damages: a novel role for metformin

Objective(s): Sepsis can result in severe organ injury by provoking inflammatory cascades and oxidative stress. Several studies are currently underway to find a drug with anti-inflammatory effects to prevent mortality and morbidity during sepsis. The present study was undertaken to assess the effects of metformin on oxidative stress and antioxidant status in sepsis induced by the Cecal Ligation...

متن کامل

Effects of gamma oryzanol on factors of oxidative stress and sepsis-induced lung injury in experimental animal model

Objective (s): There is corroborating evidence to substantiate redox imbalance and oxidative stress in sepsis that finally leads to organ damage or even death. Gamma oryzanol (GO) is one of the major bioactive components in rice bran has been considered to function as an antioxidant. The present study was carried out to evaluate the antioxidant activity of gamma oryzanol in vitro and its effica...

متن کامل

Oxidative membrane damage and its involvement in gamma radiation-induced apoptotic cell death.

Background: Recent results have provided increasing evidence to support involvement of membrane damage in the mechanism of ionizing radiation induced killing of mammalian cells. These findings have stimulated renewed interest in evaluating the damage to membrane as a primary initiator in radiation-induced cell killing especially in apoptotic death. The present study was aimed to gain deeper ins...

متن کامل

تاثیر اسانس زیره سیاه بر سطح فاکتورهای استرس اکسیداتیو در بافت‌های قلب و کلیه رت‌های سپتیکی

Abstract Background: Sepsis is a systemic response to severe infections leading to organ failure and death. Recently the role of herbal drugs in the management of the inflammatory response has come under increased scrutiny. Caraway is a well known traditional herbal plant believed to contain active components with pharmacological properties such as antioxidative effects. In this study attemp...

متن کامل

Vulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications

Background The present study describes the susceptibility of prepubertal testis of mice to prooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions. MaterialsAndMethods Following in vitro exposure to iron (5,10 and 25 M), oxidative response measured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4 wk) was more robust c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017